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Outline

The long ITER resitive wall penetration time 7,,;; can have mitigating effects
on TQ, REs, and asymmetric wall force
e Thermal quench

— TQ time can depend on 7,,,;; because of resistive wall tearimg mode

e Asymmetric wall force depends on Syui1 = Twaii/TA
— Cold disruptions : small force when CQ time 7cg < Twau

— Hot disruptions : small force when S,,,;; >> 100.

e REs in cold disruptions
— Runaway electrons can cause large wall force when RE current fraction =~ 1.

— Longer TQ time can reduce RE current fraction



Thermal Quench Simulations
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Simulations with M3D initialized with ITER [Strauss, PoP 2018] inductive Scenario
2 15 MA with current profile modified to represent MGI mitigation. Current set to
zero outside ¢ = 2 magnetic surface [Izzo 2008], keeping total current unchanged.
Temperature also lowered outside the g =2 surface, increasing the resistivity which
varied as 7-3/2. This made plasma MHD unstable. Parallel thermal conduction
assumed with T, = 100eV at the wall. In the simulations S = 10° initially on axis.
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(@) T att = 216374, Sypan = 103.
(b) P history for cases, S, = 103,2.5 x 103, 10, showing normal asymmetric

magnetic field at the wall b,, as a function of time. As b, increases in time, P falls

more rapidly. (c) normalized TQ time 77q /74 VS. Swau Fitto 7rg o Sié?p suggests a
RWTM [Finn, 1995].



Thermal Quench with RWTM
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where b, is the normalized asymmetric normal magnetlc field, assuming circular flux
surfaces for simplicity. Integrating, the total temperature is given by
o<T>
ot
where < T' >= [Trdr, T' = 8T /0r(a), c1 =< T > /(a>T").

— a(m”bf + K/J_)T/ (2)

c1a?

= (83 + B3 exp(yrwt)] + w1 + 5" (3)
TTQ

where the last term is quasilinear diffusion, and yryy74 o< S~ 1/35 49 Then obtain

wall
the ad hoc formula
C1TA
TQ ~ —4/9
coS~3S i + R4 Ryb3

where I?:H = IiH/(CLQTA), K| = KJJ_/(CL TA), with cg = O(l)

(4)



TQ Timescales
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(a) 7rq for cases with S = 10%,10°, 10°, with S,y = 10%, 5 = 10,7, = 10*.
The scaling is Srq ~ S1/3. This gives Srg = rrqg/ma = 0.754/°S1/3.

(b) effect of varying Tt on x| and Stq.

tro =~ 1/(R)bg) ~ 10%74 = 10ms, bo = 3 x 1073, T, =~ 100eV.

If co = 1/3,8 = Sy = 10%, then trg ~ S350 ~ 2mes.

If TQ time is due to RWTMSs, then 77¢ Sié?z is about 6 times longer in ITER than in

JET.

This could reduce thermal loading and RE generation.



ITER cold disruptions - asymmetric wall force

e cold disruptions - TQ precedes VDE and CQ. AF;, depends on 7cq/Twau- FOr
expected ITER 7cg/Twan < 1 AF, =~ 5MN.
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(a) Time history of I, Z,, AF;,, P in wall time units [Strauss, 2018]. Simulation with
TCQ/Twall — 1/2

(b) AF, vs. Tcq/Twan With AF, < 30M N. Also shown is halo fraction HF'.



Sideways wall force in JET disruptions

Simulations were done with M3D and recently with M3DC1 codes. The runs were
initialized with a reconstruction of JET shot 71985. The current quench time r¢g was
controlled by an applied electric field. The wall force is quenched for 7cq < Tyan-
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Solid curves: M3D and M3DC1 simulations where 7¢q/7yqu Was varied. Plots of
asymmetric wall force AF,, and Noll force AFy = #nBAMryz. AF,c1, M3DC1 wall
force, A Fyxc1, M3DC1 Noll force, A F,,,3, M3D wall force, A Fl,,3, M3D Noll force.

Comparison with data: dots: AFx and 1¢q calculated for all JET shots in ILW dis-
ruption database, 2011 - 2016, labeled A Fn . Points "VDE” are VDE shots, and
all shots. (JET Data discussed with E. Joffrin and S. Gerasimov and presented at
ITPA meeting, Daejeong, Korea, April 2019)



ITER hot disruptions

e hot disruptions - VDE precedes TQ and CQ A F is maximum for y7q; ~ 1. In
ITER vTway >> 1 and AF, is small.
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asymmetric force in hot disruption simulations [Strauss et al. NF 2013] with AF, <
60M N. VDE caused plasma and flux to scrape off at the wall, until the edge ¢ =~ 2.
Also shown are “extra - hot” disruption with AF, < 200,250M N. AF, VvS. Syaii-
They were produced with 2D VDE of model MGl equilibria, then evolving in 3D.

For ITER relevant S,,,; the force is small, unless there are REs with ¢ >> 7,u



Runaway Electrons - Fluid model

If REs carry the current, it is possible that 7cg >> 7. MHD simulations were
extended by adding RE fluid model. Runaway fluid equations are

[Helander 2007],[Cai and Fu 2015]
104y

pucv V@ —n(Jy — JrE) (5)

and J) gg is the RE current density.The RE continuity equation can be expressed,

assuming the REs have speed ¢

OJrE J\RE
~—-—-cB-V|—— S 6
2 c B + SkrE (6)

where Sgg in the following is a model source term.
Sre = a(t)(J) — Jyre)Jjre > 0 (7)

Approximately
J

B.V (%) = O(va/c) ~ 0 (8)

which is solved similarly to electron temperature, like a bounce average method.
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ITER REs

With REs, 2 quantities determine wall force, 7cq/Twan @Nd IrREmaz/Ipo-

I Ire: OFy Z, AFy Vs T/ Tyl
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(@) AF,, I, Irg, and Z, as functions of time t/7yq, for Irp = Io. (b) AF, as a
function of Tcq/Twau- Also shown are AFgrp,, where a = 1,2/3,1/2. The wall
force depends on the ratio of RE current to initial current.

If Irg/Io < 1/2, the force is small.

If Irg/Io = 1, the force is the same as having a long CQ time.
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Summary

Long ITER 7,,; has a mitigating effect on disruptions

TQ time can depend on RWTM. In ITER, TQ time might be 10ms.
— reduce thermal load rate

— reduce RE generation rate

ITER asymmetric wall force is small in cold and hot disruptions
— cold disruptions - TQ precedes VDE. Force is small for 7cq < Twan-

— hot disruptions - VDE precedes TQ, CQ. Force is small for yra; >> 1

REs
— can affect cold disruptions, probably not relevant in hot disruptions

— If ratio of RE current to initial current, Irr/I,0 ~ 1, the force can be large.
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